読者です 読者をやめる 読者になる 読者になる

広告/統計/アニメ/映画 等に関するブログ

広告/統計/アニメ/映画 等に関するブログ

AI(人工知能)の本領は、「集合知」と「センシング」だと思う

最近はバズワードのように「AI(人工知能)」が流行っている。 とは言え、ニューロ家電やファジー家電と言っていた頃もあるし、一体今、何が重要で、何が重要でないのか?よくわからないというのが正直なところではないかと思う。

人工知能の歴史

人工知能の歴史については、この本が詳しい。

人工知能自体はずっと昔から研究されているもので、これまで何度も流行りがあった。

機械学習、深層学習、人工知能

現在流行っているAIというのは、ドラえもん鉄腕アトムのようなものではなく、「機械学習」「パターン認識」のものである。 感情を理解するお友達ロボットではなくて、与えられた情報を事前に学習した情報と照らし合わせて正しく分類しているだけで、 例えれば、受験勉強が得意な優等生タイプ、ということだ。

機械学習人工知能の言葉の包含関係はこちらの図を見て欲しい。 blogs.nvidia.co.jp

ここ最近発達してきた理由

では、昔からあった筈の人工知能が何故この数年急速に発達してきたのか?というと、その技術的理由は、 - コンピュータの性能が上がって、これまで計算できなかった量の計算ができるようになったこと。 - 乱数によって擬似的に学習用データを自動生成する、という手法を思いついたこと。 である。

人工知能の得意分野を俯瞰で見る

人工知能が人の仕事を奪うのか?誰の仕事を奪うのか?を議論することに意味は薄い。今も昔も技術革新で職を失う人は居たし、これらかも同じだ。 そんな心配をしている暇があったら、人工知能で人間がより豊かになるにはどうしたらいいのか?を考える方が建設的である。

大量のデータが処理できるなら「集合知」が重要である

インターネットで世界が繋がり、Wikipediaが流行りだした頃によく言われていたのが「集合知」という概念である。 Amazonのレコメンド機能が始まったとき、その精度の高さに驚いた頃を思い出して欲しい。過去にその本を買った人が他にどんな本を買っていたのか?という情報を大量に集めれば集める程、「この本を買った人は、この本もチェックしています」の精度が上がる。

となるど、とにかくデータを集めることが重要で、自社だけで頑張って集めるよりも、如何に外部と協力してデータを集めるか?或いは、何かのサービスのついでにデータを収集するか?が人工知能の性能に直結する。

そういう意味で、個人のデータを記録し学習し気の利いたタイミングで何かをサジェストしてくれる人工知能家電、というのは、人工知能のメリットを活かせていないと言えるだろう。

情報が共有されていない分野の情報をつなぐことが重要

今、医療分野に人工知能が入ろうとしている。これまで属人的な個人のスキルとして蓄積されていたものを繋げてみんなで一緒に考えることができるようになる。そういう分野こそ活躍の場があると思われる。

例えば、「小さい子どもの子育て」という分野は、人類が産まれてこの方、うん十年とあるわけだがいつまでたっても正解がなく、毎年のように説は新しくなる。個人にとっては、人生の中で数年間のことで、老人になると必要の薄い知識になる。一方で社会全体では、いつも大量にその情報を欲している人がいる。

そういった問題を解決するために使われるべきだろう。

人間を超えるには「センシング」技術の応用が重要である

このことについて分かり易いのは、落合陽一先生のこの本の最後の方である。

魔法の世紀

魔法の世紀

人間の知覚を超える技術としては、今はおなじみの赤外線が代表的だが、センシング技術が発展することによって、人間の閾値を超えた範囲の空気の振動が測定できるようになった。つまりそれが落合陽一先生の言う「魔法」の世界である。

センシングは既に役立っている

経験と勘に頼っていた農業がセンシングデータによって手軽になってきたことは、周知の事実だと思われる。 もっと身近な例で言えば、デジタルカメラが自動的に人間の顔を認識して自動でピントを併せてくれる、といったものも普通に使っている筈だ。ちょっと前までは人間がマニュアルで焦点距離・光量・シャッタースピード全て調整していた。

人間には感知できないセンシングが重要

相手が怒っているのか? 個人の経験では判断に限界があることがある。

しかし人間よりも細かく声の抑揚を感知できれば、感情も認識できるようになる。

nlab.itmedia.co.jp

「勘のいい人」「気の利く人」すらも人工知能の力でバックアップできる時代が来るかもしれない。

人間がデータとして普段意識していないこともデータベース化する

入館IDの行動ログをとって、誰と誰との会話量が多いか?など組織や個人が普段集計していないデータも収集することによって組織変更に応用できる

或いは、こちらの本にある、バルーンチャレンジの例のように、情報提供のアシストだけをして結果に一見コミットしていないように見えるけれど実際には重要な役割をした人、に注目すると良い場合がある。

ソーシャル物理学:「良いアイデアはいかに広がるか」の新しい科学

ソーシャル物理学:「良いアイデアはいかに広がるか」の新しい科学

こういったことは既に実用化されていて、客先とのメールの回数によって担当営業がそろそろ営業に行くべきクライアントを見つけてアラートを出す、みたいなシステムも存在する。そういった個人では気がつかないデータを活躍することも重要と思われる。

まとめ

  • 色々な人が経験している筈なのに知識が共有されていないなぁという分野
  • 誰かの勘に頼っているなぁという分野
  • データを取ることなんて無理だと思っていた分野

が今後人工知能が伸びる分野だと思われる。

個人の購買履歴を追ってターゲティングされた広告を打つ、或いは、課金ユーザーを維持する、という狭い範囲で統計学が活かされても余り社会を良くするとは思えないし、そういう分野は大きなイノベーションには繋がらない。社会全体の役に立つように統計学を生かして欲しいと思う。